La acelerada búsqueda de candidatos terapéuticos contra SARS-CoV-2, métodos in silico: Revisión

Oscar Cobar, Rodrigo J. Vargas

Resumen


El reposicionamiento de fármacos como la derivatización química, que se han aplicado en los estudios de descubrimiento y diseño de fármacos contra el SARS-CoV-2, dependen del ciclo de vida del virus, las dianas moleculares identificadas y un diseño basado en su estructura e interacciones moleculares. Se realizó una revisión extensa en las bases de datos públicas e institucionales RSCB-Protein Data Bank, ZINC, NCBI (PubMed, PMC), PubChem, Science Direct e instituciones como CDC, NIH y revistas científicas especializadas sobre los avances en la búsqueda de nuevas moléculas contra el nuevo coronavirus basadas en estudios in silico, detectándose más de 40,000 publicaciones sobre SARS-CoV-2 y cerca de 200 relacionadas a dichos estudios, las consideradas más relevantes fueron analizadas e incluidas en este artículo. Su análisis evidencia el avance acelerado de las herramientas computacionales y fortaleza del diseño de fármacos asistido por computadora (in silico approach) para la generación de nuevas moléculas con posibilidad de ser activas contra COVID-19 y presenta las principales dianas moleculares sobre la que actúan estos agentes con potencial antiviral.

Texto completo:

PDF

Referencias


Adam, S., Eyupoglu, V., Sarfraz, I., Rasuli, A., & Ali, M (2020). Identification of potent Covid-19 main protease (Mpro) inhibitors from natural polyphenols: An in silico strategy unveils a hope against Corona. Preprints. https://doi.org/10.20944/preprint202003.0333.v1

Bhardwaj, R. (2020). A predictive model for the evolution of COVID-19. Transactions of the Indian National Academy of Engineering, 5, 133-140. https://doi.org/10.1007/s41403-020-00130-w

Bianchi, M., Benvenuto, D., Giovanetti, M., Angeletti, S., Ciccozzi, M., & Pascarella, S. (2020). SARS-CoV-2 envelope and membrane proteins: Differences from closely related proteins linked to cross-species transmission? BioMed Research International. Article 4389089. https://doi.org/10.1155/2020/4389089

Boopathi, S., Poma, A. B., & Kolandaivel, P. (2020). Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1758788

Bosch, B. J., van der Zee, R., de Haan, C. A. M., & Rottier, P. J. M. (2003). The Coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex. Journal of Virology, 77(16), 8801-8811. https://doi.org/10.1128/JVI.77.16.8801-8811.2003

Bruno, A., Costantino, G., Sartori, L., & Radi, M. (2019). The in silico drug discovery toolbox: Applications in lead discovery and optimization. Current Medicinal Chemistry, 26(21), 3838-3873. https://doi.org/10.2174/0929867324666171107101035

Bzówka, M., Mitusi?ska, K., Raczy?ska, A., Samol, A., Tuszy?ski, J., & Góra, A. (2020). Structural and evolutionary analysis indicate that the SARS-CoV-2 Mpro is a challenging target for small-molecule inhibitor design. International Journal of Molecular Science, 21(9), Article 3099. https://doi.org/10.3390/ijms21093099

Cava, C., Bertoli, G., & Castiglioni, I. (2020). In silico discovery of candidate drugs against Covid-19. Viruses, 12(4), Article 404. https://doi.org/10.3390/v12040404

Chaccour, C., Hamman, F., Ramón-García, S., & Rabinovich, R. (2020). Ivermectin and COVID-19: Keeping rigor in times of urgency. The American Journal of Tropical Medicine and Hygiene, 102(6), 1156-1157. https://doi.org/10.4269/ajtmh.20-0271

Chamdel, V., Raj, S., Rathi, B. & Kumar, D. (2020). In silico identification of potent Covid-19 main protease inhibitors from FDA approved antiviral compounds and active phytochemicals through molecular docking: A drug repurposing approach. Preprints. https://doi.org/10.20944/preprints202003.0349.v1

Chen, C., Zhang, Y., Huang, J., Yin, P., Cheng, Z., Wu, J., … Wang, X. (2020). Favipiravir versus arbidol for COVID-19: A randomized clinical trial. MedRxiv. https://doi.org/10.1101/2020.03.17.20037432

Choudhury, A., & Mukherjee, S. (2020). In silico studies on the comparative characterization of the interactions of SARS?CoV?2 spike glycoprotein with ACE?2 receptor homologs and human TLRs. Journal of Medical Virology, 92(10). https://doi.org/10.1002/jmv.25987

Corrêa, C., Laaksonen, A., & Barroso da Silva, F. L. (2020). On the interactions of the receptor-binding domain of SARS-CoV-1 and SARS-CoV-2 spike proteins with monoclonal antibodies and the receptor ACE2. Virus Research, 285, Article 198021. https://doi.org/10.1016/j.virusres.2020.198021

Durdagi, S. (2020). Virtual drug repurposing study against SARS-CoV-2 TMPRSS2 target. Turkish Journal of Biology, 44(3), 185-191. https://doi.org/10.3906/biy-2005-112

Durojaiye, A. B., Clarke, J.-R. D., Stamatiades, G. A., & Wang, C. (2020). Repurposing cefuroxime for treatment of COVID-19: A scoping review of in silico studies. Journal of Biomolecular Structure & Dynamics. https://doi.org/10.1080/07391102.2020.1777904

Eaaswarkhanth, M., Al Madhoun, A., & Al-Mulla, F. (2020). Could the D614G substitution in the SARS-CoV-2 spike (S) protein be associated with higher COVID-19 mortality? International Journal of Infectious Diseases, 96, 459-460. https://doi.org/10.1016/j.ijid.2020.05.071

Elmezayen, A. D., Al-Obaidi, A., ?ahin, A. T., & Yelekçi, K. (2020). Drug repurposing for coronavirus (COVID-19): In silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. Journal of Biomolecular Structure & Dynamics. https://doi.org/10.1080/07391102.2020.1758791

Estrada, E. (2020). Topological analysis of SARS CoV-2 main protease. Chaos: An Interdisciplinary Journal of Nonlinear Science, 30(6), 061102. https://doi.org/10.1063/5.0013029

Erlina, L., Paramita, R. I., Kusuma, W. A., Fadilah, F., Tedjo, A., Pratomo, I. P., ... Yanur, A. (2020). Virtual screening on Indonesian herbal compounds as COVID-19 supportive therapy: Machine learning and pharmacophore modeling approaches. Research Square. https://doi.org/10.21203/rs.3.rs-29119/v1

Farag, A. B., Wang, P., Ahmed, M. S., & Sadek, H. A. (2020). Identification of FDA approved drugs targeting COVID-19 virus by structure-based drug repositioning. ChemRxiv. https://doi.org/10.26434/chemrxiv.12003930.v1

Ganesan, A., Arimondo, P. B., Rots, M. G., Jeronimo, C., & Berdasco, M. (2019). The timeline of epigenetic drug discovery: From reality to dreams. Clinical Epigenetics, 11(1), 174. https://doi.org/10.1186/s13148-019-0776-0

Gao, Y., Yan, L., Huang, Y., Liu, F., Zhao, Y., Cao, L., ... Ge, J. (2020). Structure of RNA-dependent RNA polymerase from COVID-19 virus. Science, 368(6492), 779-782. https://doi.org/10.1126/science.abb7498

Gentile, F., Agrawal, V., Hsing, M., Ton, A.-T., Ban, F., Norinder, U., … Cherkasov, A. (2020). Deep docking: A deep learning platform for augmentation of structure based drug discovery. ACS Central Science, 6(6), 939-949. https://doi.org/10.1021/acscentsci.0c00229

Ghosh, R., Chakraborty, A., Biswas, A., & Chowdhuri, S. (2020). Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors – an in silico docking and molecular dynamics simulation study. Journal of Biomolecular Structure & Dynamics, 1-13. https://doi.org/10.1080/07391102.2020.1779818

Glowacka, I., Bertram, S., Müller, M. A., Allen, P., Soilleux, E., Pfefferle, S., … Pöhlmann, S. (2011). Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. Journal of Virology, 85(9), 4122-4134. https://doi.org/10.1128/JVI.02232-10

Gonzalez-Paz, L. A., Lossada, C. A., Moncayo, L. S., Romero, F., Paz, J. L., Vera-Villalobos, J. … Alvarado, Y. J. (2020). Theoretical molecular docking study of the structural disruption of the viral 3CL-protease of COVID19 induced by binding of capsaicin, piperine and curcumin Part 1: A comparative study with chloroquine and hydrochloroquine to antimalaric drugs. Research Square, preprint. https://doi.org/10.21203/rs-3-rs-21206/v1

Hall, D. C., & Ji, H.-F. (2020). A search for medications to treat COVID-19 via in silico molecular docking models of the SARS-CoV-2 spike glycoprotein and 3CL protease. Travel Medicine and Infectious Disease, 35, 101646. https://doi.org/10.1016/j.tmaid.2020.101646

Hashem, H. E. (2020). In Silico approach of some selected honey constituents as SARS-CoV-2 main protease (COVID-19) inhibitors. ChemRxiv. https://doi.org/10.26434/chemrxiv.12115359.v2

Hoffmann, M., Hofmann-Winkler, H., & Pöhlmann, S. (2018). Priming time: How cellular proteases arm coronavirus spike proteins. En E. Böttcher-Friebertshäuser, W. Garten & H. D. Klenk (Eds.), Activation of Viruses by Host Proteases (pp. 71-98). Cham: Springer. https://doi.org/10.1007/978-3-319-75474-1_4

Hoffmann, M., Kleine-Weber, H., Krüger, N., Müller, M., Drosten, C., & Pöhlmann, S. (2020). The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. BioRxiv. https://doi.org/10.1101/2020.01.31.929042

Holshue, M. L., DeBolt, C., Lindquist, S., Lofy, K. H., Wiesman, J., Bruce, H., … Pillai, S. K. (2020). First case of 2019 novel coronavirus in the United States. New England Journal of Medicine, 382(10), 929-936. https://doi.org/10.1056/NEJMoa2001191

Huang, Y., Yang, C., Xu, X.-F., Xu, W., & Liu, S.-w. (2020). Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica, 41, 1141-1149. https://doi.org/10.1038/s41401-020-0485-4

Hung, H.-C., Ke, Y.-Y., Huang, S. Y., Huang, P.-N., Kung, Y.-A., Chang, T.-Y., … Hsu, J. T.-A. (2020). Discovery of M protease inhibitors encoded by SARS-CoV-2. Antimicrobial Agents and Chemotherapy, 64, Article e200872. https://doi.org/10.1128/AAC.00872-20

Huynh, T., Wang, H., & Luan, B. (2020). In silico exploration of the molecular mechanism of clinically oriented drugs for possibly inhibiting SARS-CoV-2’s main protease. Journal of Physical Chemistry Letters, 11(11), 4413-4420. https://doi.org/10.1021/acs.jpclett.0c00994

Jiménez-Alberto, A., Ribas-Aparicio, R. M., Aparicio-Ozores, G., & Castelán-Vega, J. A. (2020). Virtual screening of approved drugs as potential SARS-CoV-2 main protease inhibitors. Computational Biology and Chemistry, 88, 107325. https://doi.org/10.1016/j.compbiolchem.2020.107325

Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., … Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289-293. https://doi.org/10.1038/s41586-020-2223-y

Jokhakar, P. H., Kalaria, R., & Patel, H. K. (2020). In silico docking studies of antimalarial drug hydroxychloroquine to SARS-CoV proteins: An emerging pandemic worldwide. ChemRxiv. https://doi.org/10.26434/chemrxiv.12488804.v1

Joshi, T., Joshi, T., Sharma, P., Mathpal, S., Pundir, H., Bhatt, V., & Chandra, S. (2020). In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking. European Review for Medical and Pharmacological Sciences, 24(8), 4529-4536. https://doi.org/10.26355/eurrev_202004_21036

Joshi, T., Sharma, P., Joshi, T., Pundir, H., Mathpal, S., & Chandra, S. (2020). Structure-based screening of novel lichen compounds against SARS Coronavirus main protease (Mpro) as potentials inhibitors of COVID-19. Molecular Diversity. https://doi.org/10.1007/s11030-020-10118-x

Kadioglu, O., Saeed, M., Greten, H. J., & Efferth, T. (2020). Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning. [Preprint]. Bulletin of the World Health Organization. https://doi.org/10.2471/BLT.20.255943

Kaitin, K. I. (2010). Deconstructing the drug development process: The new face of innovation. Clinical Pharmacology & Therapeutics, 87(3), 356-361. https://doi.org/10.1038/clpt.2009.293

Kandeel, M., & Al-Nazawi, M. (2020). Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease. Life Sciences, 251, 117627. https://doi.org/10.1016/j.lfs.2020.117627

Kapetanovic, I. M. (2008). Computer-aided drug discovery and development (CADDD): In silico-chemico-biological approach. Chemico-Biological Interactions, 171(2), 165-176. https://doi.org/10.1016/j.cbi.2006.12.006

Khaerunnisa, S., Kurniawa, H., Avaluddin, R., Suhartati, S., & Soetjipto, S. (2020). Potential inhibitor of Covid-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprints. https://doi.org/10.20944/preprints202003.0226.v1

Kim, D., Lee, J.-Y., Yang, J.-S-, Kim, J.-W., Kim, V. N., & Chang, H. (2020). The architecture of SARS-CoV-2 transcriptome. Cell, 181(4), 914-921.e10. https://doi.org/10.1016/j.cell.2020.04.011

Korber, B., Fischer, W., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., … Montefiori, D. (2020). Tracking changes in SARS-CoV-2 spike: Evidence that D614G increases infectivity of the COVID-19 virus. Cell, 182(4), 812-827.e19. https://doi.org/10.1016/j.cell.2020.06.043

Kumar, D., Chandel, V., Raj, S., & Rathi, B. (2020). In silico identification of potent FDA approved drugs against Coronavirus COVID-19 main protease: A drug repurposing approach. Chemical Biology Letters, 7(3), 166-175.

http://pubs.iscience.in/journal/index.php/cbl/article/view/1033

Kumar, Y., Singh, H., & Patel, C. N. (2020). In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing. Journal of Infection and Public Health, 13(9), 1210-1223. https://doi.org/10.1016/j.jiph.2020.06.016

Lagunin, A. A., Goel, R. K., Gawande, D. Y., Pahwa, P., Gloriozova, T. A., Dmitriev, A. V., … Poroikov, V. V. (2014). Chemo- and bioinformatics resources for in silico drug discovery from medicinal plants beyond their traditional use: A critical review. Natural Product Reports, 31(11), 1585-1611. https://doi.org/10.1039/C4NP00068D

Leelananda, S. P., & Lindert, S. (2016). Computational methods in drug discovery. Beilstein Journal of Organic Chemistry, 12(1), 2694-2718. https://doi.org/10.3762/bjoc.12.267

Li, F., Li, W., Farzan, M., & Harrison, S. C. (2005). Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science, 309(5742), 1864-1868. https://doi.org/10.1126/science.1116480

Li, G., & De Clercq, E. (2020). Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nature Reviews Drug Discovery, 19(3), 149-150. https://doi.org/10.1038/d41573-020-00016-0

Li, H., Zhou, Y., Zhang, M., Wang, H., Zhao, Q., & Liu, J. (2020). Updated approaches against SARS-CoV-2. Antimicrobial Agents and Chemotherapy, 64(6), Article e00483-20. https://doi.org/10.1128/AAC.00483-20

Li, W., Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., Berne, M. A., … Farzan, M. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426(6965), 450-454. https://doi.org/10.1038/nature02145

Li, W., Zhang, C., Sui, J., Kuhn, J. H., Moore, M. J., Luo, S., … Farzan, M. (2005). Receptor and viral determinants of SARS?coronavirus adaptation to human ACE2. The EMBO Journal, 24(8), 1634-1643. https://doi.org/10.1038/sj.emboj.7600640

Liu, C., Zhou, Q., Li, Y., Garner, L. V., Watkins, S. P., Carter, L. J., … Albaiu, D. (2020). Research and development on therapeutic agents and vaccines for COVID-19 and related human Coronavirus diseases. ACS Central Science, 6(3), 315-331. https://doi.org/10.1021/acscentsci.0c00272

Lukassen, S., Chua, R. L., Trefzer, T., Kahn, N. C., Schneider, M. A., Muley, T., … Eils, R. (2020). SARS-CoV-2 receptor ACE2 and TMPRSS2 are predominantly expressed in a transient secretory cell type in subsegmental bronchial branches. BioRxiv. https://doi.org/10.1101/2020.03.13.991455

Mahanta, S., Chowdhury, P., Gogoi, N., Goswami, N., Borah, D., Kumar, R., … Gogoi, B. (2020). Potential anti-viral activity of approved repurposed drug against main protease of SARS-CoV-2: An in silico based approach. Journal of Biomolecular Structure and Dynamics, 1-10. https://doi.org/10.1080/07391102.2020.1768902

Maranon, D. G., Anderson, J. R., Maranon, A. G., & Wilusz, J. (2020). The interface between coronaviruses and host cell RNA biology: Novel potential insights for future therapeutic intervention. Wiley Interdisciplinary Reviews. RNA, 11(5), Article e1614. https://doi.org/10.1002/wrna.1614

Matsuyama, S., Nagata, N., Shirato, K., Kawase, M., Takeda, M., & Taguchi, F. (2010). Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. Journal of Virology, 84(24), 12658-12664. https://doi.org/10.1128/JVI.01542-10

Meyer, D., Sielaff, F., Hammami, M., Bottcher-Friebertshauser, E., Garten, W., & Steinmetzer, T. (2013). Identification of the first synthetic inhibitors of the type II transmembrane serine protease TMPRSS2 suitable for inhibition of influenza virus activation. Biochemical Journal, 452(2), 331-343. https://doi.org/10.1042/BJ20130101

Mirza, M. U., & Froeyen, M. (2020). Structural elucidation of SARS-CoV-2 vital proteins: Computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase. Journal of Pharmaceutical Analysis, 10(4), 320-328. https://doi.org/10.1016/j.jpha.2020.04.008

Mishra, A., Pathak, Y., Choudhir, G., Kumar, A., Mishra, S. K., & Tripathi, V. (2020). Natural compounds as potential inhibitors of novel coronavirus (COVID-19) main protease: An in silico study. Research Square, preprint. https://doi.org/10.21203/rs.3.rs-22839/v2

Monaghan, R. L., & Barrett, J. F. (2006). Antibacterial drug discovery - Then, now and the genomics future. Biochemical Pharmacology, 71(7), 901-909. https://doi.org/10.1016/j.bcp.2005.11.023

Naik, V. R., Munikumar, M., Ramakrishna, U., Srujana, M., Goudar, G., Naresh, P., ... Hemalatha, R. (2020). Remdesivir (GS-5734) as a therapeutic option of 2019-nCOV main protease – in silico approach. Journal of Biomolecular Structure & Dynamics, 1-14. https://doi.org/10.1080/07391102.2020.1781694

Narkhede, R. R., Pise, A. V., Cheke, R. S., & Shinde, S. D. (2020). Recognition of natural products as potential inhibitors of COVID-19 main protease (Mpro): In-silico evidences. Natural Products and Bioprospecting, 10, 297-306. https://doi.org/10.1007/s13659-020-00253-1

Oliveira, A. S. F., Ibarra, A. A., Bermudez, I., Casalino, L., Gaieb, Z., Shoemark, D. K., … Mulholland, A. J. (2020). Simulations support the interaction of the SARS-CoV-2 spike protein with nicotinic acetylcholine receptors and suggest subtype specificity. BioRxiv. https://doi.org/10.1101/2020.07.16.206680

Pachetti, M., Marini, B., Benedetti, F., Giudici, F., Mauro, E., Storici, P., … Ippodrino, R. (2020). Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. Journal of Translational Medicine 18, Article 179. https://doi.org/10.1186/s12967-020-02344-6

Paz, L. A. G., Lossada, C. A., Moncayo, L. S., Romero, F., Paz, J. L., Vera-Villalobos, … Alvarado, Y. J. (2020). Molecular docking and molecular dynamic study of two viral proteins associated with SARS-CoV-2 with ivermectin. Preprints. https://doi.org/10.20944/preprints202004.0334.v1

Peterson, L. E. (2020). COVID-19 and flavonoids: In silico molecular dynamics docking to the active catalytic site of SARS-CoV and SARS-CoV-2 main protease. Social Science Research Network. https://doi.org/10.2139/ssrn.3599426

Rahman, N., Basharat, Z., Yousuf, M., Castaldo G., Rastrelli, L., & Khan, H. (2020). Virtual screening of natural products against type II transmembrane serine protease (TMPRSS2), the priming agent of Coronavirus 2 (SARS-CoV-2). Molecules, 25(10), 2271. https://doi.org/10.3390/molecules25102271

Rensi, S., Altman, R. B., Liu, T., Lo, Y.-C., McInnes, G., Derry, A., & Keys, A. (2020). Homology modeling of TMPRSS2 yields candidate drugs that may inhibit entry of SARS-CoV-2 into human cells. ChemRxiv. https://doi.org/10.26434/chemrxiv.12009582

Rut, W., Groborz, K., Zhang, L., Sun, X., Zmudzinski, M., Pawlik, B., … Drag, M. (2020). Substrate specificity profiling of SARS-CoV-2 main protease enables design of activity-based probes for patient-sample imaging. BioRxiv. https://doi.org/10.1101/2020.03.07.981928

Sanders, J. M., Monogue, M. L., Jodlowski, T. Z., & Cutrell, J. B. (2020). Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. Journal of the American Medical Association, 323(18), 1824-1836. https://doi.org/10.1001/jama.2020.6019

Shah, B., Modi, P., & Sagar, S. R. (2020). In silico studies on therapeutic agents for COVID-19: Drug repurposing approach. Life Sciences, 252, 117652. https://doi.org/10.1016/j.lfs.2020.117652

Shamsi, A., Mohammad, T., Anwar, S., Al Ajmi, M. F., Hussain, A., Rehman, M. T., … Hassan, M. I. (2020). Glecaprevir and Maraviroc are high-affinity inhibitors of SARS-CoV-2 main protease: Possible implication in COVID-19 therapy. Bioscience Reports, 40(6), BSR20201256. https://doi.org/10.1042/BSR20201256

Shrimp, J. H., Kales, S. C., Sanderson, P. E., Simeonov, A., Shen, M., & Hall, M. D. (2020). An enzymatic TMPRSS2 assay for assessment of clinical candidates and discovery of inhibitors as potential treatment of COVID-19. BioRxiv. https://doi.org/10.1101/2020.06.23.167544

Shulla, A., Heald-Sargent, T., Subramanya, G., Zhao, J., Perlman, S., & Gallagher, T. (2011). A transmembrane serine protease is linked to the severe acute respiratory syndrome Coronavirus receptor and activates virus entry. Journal of Virology, 85(2), 873-882. https://doi.org/10.1128/JVI.02062-10

Sisay, M. (2020). Available evidence and ongoing clinical trials of remdesivir: Could it be a promising therapeutic option for COVID-19? Frontiers in Pharmacology, 11, 791. https://doi.org/10.3389/fphar.2020.00791

Srinivasan, S., Cui, H., Gao, Z., Liu, M., Lu, S., Mkandawire, W., ... Korkin, D. (2020). Structural genomics of SARS-CoV-2 indicates evolutionary conserved functional regions of viral proteins. Viruses, 12(4), 360. https://doi.org/10.3390/v12040360

Srivastava, A. K., Kumar, A., Tiwari, G., Kumar, R., & Misra, N. (2020). In silico investigations on the potential inhibitors for COVID-19 protease. ArXiv. arXiv:2003.10642v2

Tan, Q., & Jin, Y. (2020). Oseltavimir is ineffective against COVID-19: In silico assessment, in vitro and retrospective study. MedRxiv. https://doi.org/10.1101/2020.05.15.20102392

Terstappen, G. C., & Reggiani, A. (2001). In silico research in drug discovery. Trends in Pharmacological Sciences, 22(1), 23-26. https://doi.org/10.1016/S0165-6147(00)01584-4

Ton, A.-T., Gentile, F., Hsing, M., Ban, F., & Cherkasov, A. (2020). Rapid identification of potential inhibitors of SARS?CoV?2 main protease by deep docking of 1.3 billion compounds. Molecular Informatics, 39(8). https://doi.org/10.1002/minf.202000028

Ullrich, S., & Nitsche, C. (2020). The SARS-CoV-2 main protease as drug target. Bioorganic & Medicinal Chemistry Letters, 30(17), 127377. https://doi.org/10.1016/j.bmcl.2020.127377

Umesh, Kundu, D., Selvaraj, C., Singh, S. K., & Dubey, V. K. (2020). Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target. Journal of Biomolecular Structure & Dynamics. https://doi.org/10.1080/07391102.2020.1763202

Wang, Y., Zhang, D., Guangua, G., Du, R., Zhao, J., Jin, Y., …Wang, C. (2020). Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet, 395(10236), 1569-1578. https://doi.org/10.1016/S0140-6736(20)31022-9

Weinmann, H., & Metternich, R. (2005). Editorial: Drug discovery process for kinease inhibitors. ChemBioChem, 6(3), 455-459. https://doi.org/10.1002/cbic.200500034

Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C.-L., Abiona, O., … McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367(6483), 1260-1263. https://doi.org/10.1126/science.abb2507

Yoshino, R., Yasuo, N., & Sekijima, M. (2020). Identification of key interactions between SARS-CoV-2 main protease and inhibitor drug candidates. Scientific Reports, 10, 12493. https://doi.org/10.1038/s41598-020-69337-9

Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., … Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved ?-ketoamide inhibitors. Science, 368(6489), 409-412. https://doi.org/10.1126/science.abb3405

Zhou, Y., Hou, Y., Shen, J., Huang, Y., Martin, W., & Cheng, F. (2020). Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discovery, 6(1), 1-18. https://doi.org/10.1038/s41421-020-0153-3




DOI: http://dx.doi.org/10.36829/63CTS.v7i3.1002

Enlaces refback

  • No hay ningún enlace refback.

Comentarios sobre este artículo

Ver todos los comentarios
 |  Añadir comentario

Licencia Creative Commons
Este trabajo está licenciado bajo una Licencia Internacional Creative Commons 4.0 Atribución-NoComercial-CompartirIgual .

Dirección General de Investigación
Universidad de San Carlos de Guatemala
Ciudad Universitaria, edificio S-11 3er nivel, zona 12
Teléfono: (502) 24187950
http://digi.usac.edu.gt

Creative Commons License
Ciencia Tecnología y Salud by Universidad de San Carlos de Guatemala is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Based on a work at http://digi.usac.edu.gt/ojsrevistas/index.php/cytes/index.